Impact of Thermal Stress on Wellbore Integrity

Presenter: Pratanu Roy

Team: Pratanu Roy, Joe Morris, Stuart Walsh, Jaisree Iyer, Yue Hao, Susan Carroll (LLNL)

Kamila Gawel, Jelena Todorovic, Malin Torsæter (SINTEF)

Lawrence Livermore National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage and Oil and Natural Gas Technologies Review Meeting

Mastering the Subsurface Through Technology Innovation and Collaboration August 16-18, 2016

Pittsburgh, Pennsylvania

LLNL-PRES-700386

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Impact of thermal stresses caused by injection of cold CO₂ into warmer storage reservoirs on wellbore integrity

Thermal mismatch between the formation and the injected CO₂ is a potential source of leakage risk

(Malin Torsater, BigCCS, 2015)

Data from Snohvit CO₂ storage project (White et al., 2014)

Project Objective

Assess the impact of thermal stresses caused by injection of CO_2 into storage reservoirs

- What is the extent of damage during thermal cycling operations?
- How the thermally induced stresses vary with variation of cooling/heating rates?
- Where the fractures are more likely to appear during thermal cycling operations?
- How to translate the experimental and simulation results into field scale?

Program Goals and Benefits

- This project develops and validates geomechanical computational tools needed to avoid wellbore failure during CO₂ injection.
- Approach
 - GEOS multi-scale, multi-physics simulator developed at LLNL
 - Wellbore Integrity
 - Update key physics to bound the impact of thermal stresses on well integrity (Completed)
 - Constrain simulations against thermal cycling experiments conducted by SINTEF (Focus of this talk)
 - Apply model to physical conditions reflecting CO₂ operations (Future work)
- Success is defined as determining temperature ranges that yield minimum damage in the wellbore.

Experimental Setup

SINTEF Thermal cycling setup with liquid nitrogen tank and heating/cooling stage

Technical drawing of the thermal platform Sample length = 20 cm, diameter = 20 cm

Simulation Specifications

- > Thermal and Linear Elastic Solvers
- Variable Temperature at inner radius
- Constant Temperature at outer radius
- > Temperature range = $-50 80 \circ C$
- > Heating or cooling rate = $1.0 2 \circ C/min$
- Fail Strength
 - Steel-Cement interface = 1.0 Mpa
 - Cement-Rock interface = 1.5 MPa

Properties/ Material	Steel	Cement	Rock
Density (kg/m ³)	8000	2300	2500
Thermal Exp. Coeff (m/(mK))	12.0 x 10 ⁻⁶	7.9 x 10 ⁻⁶	10.0 x 10 ⁻⁶
Thermal Conductivity (W/m/K)	50	1	2.1
Specific Heat (J/kg/K)	450	1600	2000
Tensile Strength (MPa)	200	2	6
Fracture Toughness (Mpa.m ^{1/2})	40	1	2.5

Code validation: Stress concentration near the wellbore region

Stresses in hollow cylinder assuming plane strain condition

Code validation: Temperature variation across multiple materials

Markers : Numerical solution Solid lines : Analytical solution

Steady state temperature distribution in a cylindrical disk with constant temperature boundary conditions

Temperature profile during Cooling

Cooling rate = 1 °C/min

Temperature (left) variations with time

Radial Stress and Hoop Stress during Cooling

Cooling rate = 1 °C/min

Radial stress (left) and hoop stress (right) variations with time

Temperature profile during Heating

Heating rate = 1 °C/min

Temperature (left) variations with time

Radial stress and Hoop stress in during Heating Tensile hoop stress near

Thermal Stress: σ

$$T = \frac{E \epsilon'}{1 - 2 \ll} (T - T_0)$$

Radial stress (left) and Hoop stress (right) variations with time

Radial crack initiation during heating

During heating – Thermal expansion causes radial cracks

Heating rate = 1.8 °C/min. Displacement 1000x magnified Fracture width = 5-10 micro meter

Adding confining pressure slows/ prevents fracture propagation

During cooling – Thermal contraction causes interfacial debonding

Cooling rate = 1.8 °C/min. Displacement 1000x magnified Fracture width = 10-20 micro meter

Adding confining pressure slows/prevents fracture propagation

Modeling of the Experiment

between copper and casing

Schematic of Experiment: Thermocouple positions

Copper-Casing Interface Temperature

Good agreement with experimental data

Cement-Casing Interface Temperature

Good agreement with experimental data

Cement-Rock Interface Temperature

Good agreement with experimental data

CT scan results did not show any visible crack

Before (Cycle = 0)

After (Cycle = 20)

Voids within cement – gray cement – transparent yellow casing – transparent blue

- Resolution of CT Scan: 150-200 micro meter in XY (horizontal) and 1 mm in Z (vertical) direction
- The material properties, especially the tensile strength and modulus of elasticity, might be different
- The CT scan was conducted at room temperature
- De Andrea et al. (2014) and Albwai et al. (2014) experimentally showed that pre-existing cracks can extend upon thermal cycling

Summary and Future Work

- Radial cracks are likely to occur in cement and/or rock during heating while debonding is likely to occur in cement/casing or cement/rock interfaces during cooling.
- Confinement reduces the tensile stresses and delays/prevents the initiation of fracture.
- Modeled SINTEF Experiments: Good agreement was found between the thermocouple readings and the numerical temperature profiles.
- No visible crack was detected during the experiment. However, numerical simulations showed possibility of failure due to the thermal cycling operations.
- Specifying the in-situ stress state for field scale simulations (on-going work as part of NRAP Phase 2).
- Predict acceptable temperature ranges for safe injection and storage of CO₂ (part of NRAP Phase 2).

Synergy Opportunities

- Collaboration with SINTEF Petroleum Research
 - Provides detailed experimental data to constrain models
- Joint publications: ARMA, GHGT

FEW0191

Project Timeline for FEW0191

			ject Du			t: Oct			E	End: Se	pt 30, 2			Planned	Planned	Actual	Actual	Comment (notes, explanation of deviation
Task	Milestone Description*		oject Ye		,			72				73		Start	End	Start	End	from plan)
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Date	Date	Date	Date	nom plan)
	Calibrate Reactive Transport																	
1.1	Model						х							1-Oct-14	30-Mar-15			
	Calibrate NMR Permeability																	
1.2	Estimates						x							1-Oct-14	30-Mar-15			
	Scale Reactive Transport																	
	Simulations from the core to																	
1.3	reservoir scale										Х			1-Jul-15	28-Feb-17			
	Write topical report on CO2																	
	storage potential in carbonate																	
1.4	rocks												х	1-Dec-16	30-Sep-17			
	Algorithm development and																	
2.1	testing				х									1-Oct-14	30-Sep-15			
	Array design and monitoring																	
2.2	recommendations								х					1-Oct-15	30-Sep-16			
	Toolset usability and																	
2.3	deployment												х	1-Oct-16	30-Sep-17			
	Analysis of monitoring and																	
	characterization data available																	
	from the In Salah Carbon																	
	Sequestration Project				х									1-Dec-14	•			
3.2	Wellbore model development				х									1-Oct-14	30-Sep-15			
	Analysis of the full-scale																	
	wellbore integrity																	
3.3	experiments										х			1-Mar-14	28-Feb-17			
	Refining simulation tools for																	
	sharing with industrial																	
3.4	partners												х	1-Oct-16	30-Sep-17			
	Engage with industrial																	Future tasks pending discussions with
4.1	partnerships		х											1-Oct-14	28-Feb-15			industrial partners
	Develop work scope with																	
4.2	industrial partners				x									1-Mar-14	30-Sep-15			

* No fewer than two (2) milestones shall be identified per calendar year per task

Temperature profiles from experiment

Dashed lines represent bottom thermocouple readings Solid lines represent top thermocouple readings

Comparison with experimental data

Outer Rock temperature

Extreme cooling

Operating conditions can be overlaid on the sealing map to guide risk assessment

Courtesy: Jaisree lyer et al. (2016)

Effect of cement hardening: No Expansion of Cement

Effect of cement hardening: 1% Expansion of Cement

